Estimating Current-Flow Closeness Centrality with a Multigrid Laplacian Solver

نویسندگان

  • Elisabetta Bergamini
  • Michael Wegner
  • Dimitar Lukarski
  • Henning Meyerhenke
چکیده

Matrices associated with graphs, such as the Laplacian, lead to numerous interesting graph problems expressed as linear systems. One field where Laplacian linear systems play a role is network analysis, e. g. for certain centrality measures that indicate if a node (or an edge) is important in the network. One such centrality measure is current-flow closeness. To allow network analysis workflows to profit from a fast Laplacian solver, we provide an implementation of the LAMG multigrid solver in the NetworKit package, facilitating the computation of current-flow closeness values or related quantities. Our main contribution consists of two algorithms that accelerate the current-flow computation for one node or a reasonably small node subset significantly. One algorithm is an unbiased estimator using sampling, the other one is based on the JohnsonLindenstrauss transform. Our inexact algorithms lead to very accurate results in practice. Thanks to them one is now able to compute an estimation of current-flow closeness of one node on networks with tens of millions of nodes and edges within seconds or a few minutes. From a network analytical point of view, our experiments indicate that current-flow closeness can discriminate among different nodes significantly better than traditional shortest-path closeness and is also considerably more resistant to noise – we thus show that two known drawbacks of shortest-path closeness are alleviated by the currentflow variant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lean Algebraic Multigrid (LAMG): Fast Graph Laplacian Linear Solver

Laplacian matrices of graphs arise in large-scale computational applications such as semi-supervised machine learning; spectral clustering of images, genetic data and web pages; transportation network flows; electrical resistor circuits; and elliptic partial differential equations discretized on unstructured grids with finite elements. A Lean Algebraic Multigrid (LAMG) solver of the symmetric l...

متن کامل

Centrality Measures Based on Current Flow

We consider variations of two well-known centrality measures, betweenness and closeness, with a different model of information spread. Rather than along shortest paths only, it is assumed that information spreads efficiently like an electrical current. We prove that the current-flow variant of closeness centrality is identical with another known measure, information centrality, and give improve...

متن کامل

Laplacian centrality: A new centrality measure for weighted networks

The centrality of vertices has been a key issue in network analysis. For unweighted networks where edges are just present or absent and have no weight attached, many centrality measures have been presented, such as degree, betweenness, closeness, eigenvector and subgraph centrality. There has been a growing need to design centrality measures for weighted networks, because weighted networks wher...

متن کامل

A Parallel Graph Laplacian Solver

Problems from graph drawing, spectral clustering, network flow and graph partitioning all can be expressed as Laplacian matrices. Theoretically fast approaches to solving these problems exist, but in practice these techniques are slow. Two practical approaches have been proposed and work well in serial. However, as problem sizes increase and single core speeds stagnate, parallelism is essential...

متن کامل

A Parallel Solver for Graph Laplacians

Problems from graph drawing, spectral clustering, network flow and graph partitioning all can be expressed as Laplacian matrices. Theoretically fast approaches to solving these problems exist, but in practice these techniques are slow. Three practical approaches have been proposed and work well in serial. However, as problem sizes increase and single core speeds stagnate, parallelism is essenti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016